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Figure 1: We train an autoencoder on example deformations and perform fast simulation in the resulting low-dimensional nonlinear latent-
space.

Abstract
We propose the first reduced model simulation framework for deformable solid dynamics using autoencoder neural networks.
We provide a data-driven approach to generating nonlinear reduced spaces for deformation dynamics. In contrast to previous
methods using machine learning which accelerate simulation by approximating the time-stepping function, we solve the true
equations of motion in the latent-space using a variational formulation of implicit integration. Our approach produces drasti-
cally smaller reduced spaces than conventional linear model reduction, improving performance and robustness. Furthermore,
our method works well with existing force-approximation cubature methods.

CCS Concepts
•Computing methodologies → Physical simulation; Dimensionality reduction and manifold learning;

1. Introduction

Computer graphics has long exploited the fact that the low spa-
tial frequency deformations of discrete, three dimensional objects
can be represented in a low dimensional space. This observation
has been utilized by practitioners of physics-based animation to
construct high-performance algorithms for the simulation of elas-
tic materials. With few exceptions to date, reduced space meth-
ods have constructed linear subspaces for the low-dimensional de-
scription, that is displacements u are represented by u = Uq for a
matrix U ∈ Rn×k. However, if the deformation being modeled is

highly nonlinear, the number of basis vectors required to define the
space may grow rapidly even if there is an underlying nonlinear
parametrization with fewer degrees-of-freedom (DOFs), as exem-
plified in Figure 2. Unfortunately, save for a few cases (such as the
humble rigid body), deriving well-posed non-linear reduced spaces
is algorithmically challenging.

The advent of deep neural networks provides an apparent solu-
tion to this problem and for the past several years there has been
an increasing interest in applying machine-learning approaches to
applications in computer animation. Recent work has applied deep-
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Figure 2: In this simple example, a pendulum which swings on a
single axis in 3-dimensional space can be reduced to 2 degrees of
freedom with a linear subspace. However, the system can be further
reduced to a single dimension by using a non-linear mapping.

learning to accelerate the pressure projection in grid-based fluid
simulation, add detail to smoke simulation and improve the perfor-
mance of skinning transforms of complex, rigged characters. These
methods have, so far, failed to crossover to the general simulation
of elastic materials.

This lack of cross-pollination can be partly blamed on the nature
of elastic simulation itself. Unlike inviscid fluid simulation, there
is no pressure projection-like operator to approximate. It’s closest
analog, the linear system solve, present in implicit time integra-
tion schemes, is itself parameterized by the degrees-of-freedom of
the physical system. This high-dimensionality makes it difficult to
approximate. Worse still, errors in this approximation can have a
pathological effect on the behavior of the non-linear solvers used
to advance the simulation through time. Unlike smoke simulation,
elastic simulation benefits less from the addition of high frequency
details and unlike a skinned animation, one cannot assume the pres-
ence of an artist produced set of skinning handles.

The algorithm described in this paper tackles these problems by
following in the footsteps of previous linear model-reduction ap-
proaches to elastic body simulation. Rather than attempting to re-
place the entire simulation pipeline with a learned analog, we in-
stead focus on performing time integration of the elastodynamic
system in a learned nonlinear latent-space. We represent this space
using an artificial neural network of the autoencoder class, which
is trained on simulation snapshots.

Our latent-space simulator is enabled by a variational formula-
tion of the equations-of-motion, acting directly in our non-linear
space. We solve these equations efficiently and stably using a
quasi-newton optimization scheme. Furthermore, we show that
other optimizations such as optimized cubature [AKJ08,vTSSH13,
YLX∗15, PBH15] are compatible with our method. Finally, we
demonstrate that our approach produces deformations which are of
equivalent or greater visual fidelity to those produced by other re-
duced space approaches while potentially improving performance
and robustness.

2. Related Work

Deformable Solid Simulation. Simulation of elastic deformable
materials has a long history in computer graphics, first introduced
by the seminal work of Terzopoulos [TPBF87]. Since then, the

PCA Only Autoencoder (Ours)

Figure 3: Compared to linear PCA, the nonlinear autoencoder al-
lows larger deformations to be captured using the same number of
degrees of freedom.

finite element method (FEM) has been one of the favored tools
for elastic simulation which solves the governing dynamic equa-
tions on a discrete volumetric mesh. Although there are other tech-
niques for deformable simulation such as particle based methods
[DG96,MC11], they are outside the scope of our present work. The
reader is referred to the survey by Nealen [AMR∗] for a compre-
hensive study of deformable simulation in computer graphics.

FEM is particularly well suited to creating accurate and real-
istic results. Unfortunately it is notoriously slow and often un-
suitable for real-time applications, especially for highly detailed
models. Fortunately, there has been significant work done to
ameliorate this shortcoming. Broadly, one can divide such algo-
rithms into two categories. The first category, Full Space Methods
(i.e, [MZS∗11, BML∗14, LSW∗18]), which gain performance by
optimizing the solution of the full system of equations by vari-
ous approximations and heuristics. The second approach, Dimen-
sionality Reduction or Reduced Space Methods, gain performance
by reducing the degrees-of-freedom (DOFs) of the physical sys-
tem [PW89, OKHS03]. Our method falls squarely under the um-
brella of dimensionality reduction, and we focus this discussion on
works related to the latter category.

Linear Dimensionality Reduction. The most popular and prolific
Reduced Space Methods are based on linear subspaces [PW89]
where the basic approach is to build an orthonormal basis of small
dimension which captures the relevant deformations and then solve
the equations of motion in these reduced coordinates. In general,
any subspace may be used and can be constructed by various means
depending on what is known about the desired deformation space in
advance. Linear modal analysis [Sha12,PW89,OKHS03] provides
a basis for a general solution space by discarding high frequency
vibration modes and can be augmented by additional basis vectors
to accommodate larger deformations [BJ05, vTSSH13, YLX∗15].
If one knows in advance the deformations that will be needed,
as in our case, principal component analysis of simulation snap-
shots [KLM01, BJ05] have been used to construct the subspace.

Linear subspaces have found wide application outside of de-
formable solid simulation, including fluids [TLP06, SSW∗13],
shape deformation [vTSSH13, BvTH16], computational de-
sign [XLCB15,MHR∗16,UMK17] and sound simulation [OSG02,
JBP06]. However, very small linear subspaces can have diffi-
culty representing even moderately non-linear deformations as seen
in Figure 3 [KJ09, CLMK17]. The work on Hyper-Reduced Pro-
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jective Dynamics [BEH18] attempts to overcome this limitation by
combining model reduction with the very efficient full-space ap-
proach of Projective Dynamics [BML∗14]. This allows the real-
time use of large subspaces to capture significant deformations.
However, it also inherits the limited range of possible constitutive
materials from Projective Dynamics.

Nonlinear Dimensionality Reduction. This has prompted a num-
ber of works which attempt to reduce the simulation dimension-
ality through nonlinear means. Perhaps the most straight-forward
approach is to coarsen the simulation mesh [KMOD09, NKJF09,
CLSM15, CLMK17]. This allows the coarse mesh to serve as a
non-linear reduced space and can yield excellent deformation fi-
delity. While coarsening does reduce the DOFs of the physical sys-
tem, it is necessary to adjust the material parameters to overcome
stiffening, and it has yet to be shown to obtain the total reduction
that linear projection can achieve. Alternative numerical coarsen-
ing schemes exist which improve baseline agreement but come at
the cost of greatly increased memory consumption [CBW∗18].

An alternative approach to coarsening is to use animation rigs
as a reduced space [HMT∗12, WJBK15]. These methods do a
good job of simulating motions that belong to the rig function
space (colloquially called the rig-space). However, the physical
response of an object is limited to the deformations created by
the rig itself, not the likely behavior of the object in the world.
More general frame-based simulation methods have also been pro-
posed [GBFP11, FGBP11]. These use Lloyd relaxation-type meth-
ods to automatically position frames based on material stiffness.
These frames then parameterize deformation via skinning trans-
forms. While these methods remove the artist dependence of rig-
space methods, they often still do not reduce the deformation space
as much as modal methods since each frame can contain up to 12
scalar DOFs. The aforementioned techniques have even been com-
bined [MGL∗15], supplying a fix for being trapped in rig space
using an overlapping, hierarchical description of dynamics. This
comes at the cost of an additional kinetic filtering operation that
glues the layers of the hierarchy together.

Sub-structuring is another promising attempt to capture more
non-linear deformations. Sub-structuring methods represent a
deformable body using a piecewise linear modal discretiza-
tion [BZ11]. However this approach still requires the manual iden-
tification of individual components for best results and topology re-
strictions to prevent locking. Other algorithms attempt to gracefully
revert back to full simulations when the modal deformation space
becomes inaccurate [KJ09,TOK14]. However, reverting back to the
full space comes with a heavy performance penalty. Time vary-
ing linear subspaces are yet another approach [HTC∗14, XB16],
however in this case the dynamics are still computed in a linear
subspace corresponding to the current pose of an underlying non-
dynamic pose space, making them specifically suitable to the sec-
ondary motions relevant to character animation.

Perhaps most similar in spirit to our approach is subspace sim-
ulation based on rotation-strain coordinates [HTZ∗11, LHdG∗14,
PBH15]. In these works, the configuration of the simulation mesh
is described by the rotation and strain of each constitutive element.
In the rotation-strain model, reduced space simulation is performed

using a purely linear modal approximation and the final mesh con-
figuration is determined by finding the rotations and strains that
best approximate the linear modal result by a least-squares pro-
jection. The major problem with such approaches (aside from the
error induced by the projection step) is that the space spanned by
per-element rotations and strains may not be embeddable in 3D as
a continuous mesh. As a result, it is often necessary to tune the ma-
terial parameters for the reduced simulation to match the full space
result. As of yet there has been no proposed algorithm to automate
this process. Furthermore, the nonlinear nature of this map is on a
per-element basis, and therefore is not necessarily able to capture
the nonlinearity present in the global deformation space.

A further class of recent work is dedicated to the reduction
and manipulation of statically-deformable 3D mesh models us-
ing neural networks. A primary challenge to overcome is ef-
fectively training on the high-dimensional data of 3D meshes.
By introducing rotation-invariant features [TGLX18], removing
pose-dependent information [CO18] or using graph convolutions
[TGL∗18, LBBM18], effective training of high quality deforma-
tion spaces is possible. However, each of these operations com-
plicates the formulation of deformation dynamics. Our approach
most closely follows that of Fast and Deep Deformation Approxi-
mation [BODO18]. They learn the nonlinear relationship between
rig parameters and vertex positions for characters. We do not re-
quire a rig, but we similarly reduce the input and output to our net-
work by applying PCA to the training poses in order to simplify the
learning task and reduce network complexity. This approach leads
to a simple description of dynamics in the latent space.

Machine Learning for Simulation. In this paper we turn to ma-
chine learning in an attempt to build a fast reduced model simula-
tion algorithm for high resolution elastic bodies. Machine learning
algorithms for physics simulation are relatively new, but there have
been recent efforts in fluid simulation to learn pressure projection
operations [TSSP16], velocity updates [LJS∗15], one-way coupled
turbulence models [CT17] and interpolate between precomputed
simulations [BPT17]. Until the recent appearance of DeepWarp
[LSW∗18] and [WKD∗18], there had been no such work for de-
formable body simulation. We argue that this is because a coherent
simulation of a deformable solid is much less tolerant to the ap-
proximation errors that machine learning algorithms tend to make.
Thus, update learning approaches such as [LJS∗15] are not likely to
be able to, for instance, return to the reference configuration when
forces are removed. DeepWarp is promising concurrent work that
attempts to learn a mapping from a linear elasticity simulation to
its nonlinear counterpart. However, being a Full Space method, it
fails to decouple mesh resolution from simulation complexity.

The concurrent work by [WBT18] on fluid simulation takes a
similar approach to ours in the sense that they learn a non-linear
reduced space in which to perform time-integration. However, the
time-stepping function is still approximated by a neural network
and not solved exactly.

Our goal is to learn reduced spaces that require fewer degrees
of freedom than other model reduction techniques while achiev-
ing equivalent or greater simulation fidelity, speed, and robustness.
We target the use-case where examples of the desired deforma-
tion space are known in advance. However, we want the data to
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be our guide and not require any additional input annotation such
as rigs, weight painting, material tuning, etc. To do this we rely on
non-linear dimensionality reduction via the autoencoder architec-
ture [BGC15] to learn a small non-linear model of an object’s con-
figuration space based on provided simulation snapshots or defor-
mation examples. We enhance our autoencoder by initializing the
outer layers with a basis computed via PCA [LKA∗17, BODO18]
and show that training directly in this fixed PCA space is sig-
nificantly faster with nearly identical results. This approach can
quickly (sometimes in seconds) learn a small non-linear reduced
space that can offer better performance than linear reduced models
in cases where the desired deformations are large and nonlinear.

Further, we show that fast dynamics simulation can be per-
formed using Quasi-Newton methods [LBK17] applied to an en-
ergy potential form of the elastodynamics equations [HLW06,
MTGG11, HMT∗12, PBH15]. Finally, we efficiently approximate
strain-energy and reduced forces for arbitrary materials using opti-
mized cubature [AKJ08] and show how our smaller reduced space
allows the use of fewer cubature points while retaining stability.

3. Background: Reduced Model Simulation

In this section we introduce our notation and describe the general
approach to linear model reduction for discrete deformable solids.
For a more comprehensive review, we direct the reader to [SB12].

Reduced Equations of Motion. We start by considering a dis-
cretized tetrahedral or hexahedral volumetric mesh with n nodes
and m elements where the configuration at time t is given by the
stacked per-node displacements u(t) ∈ R3n relative to some rest
pose x0 ∈ R3n. The dynamics of this mesh are governed by New-
ton’s second law, relating acceleration at the vertices to the internal
and external forces.

Mü(t) = fint(u(t))+ fext(t) (1)

where M ∈ R3n×3n is a sparse mass matrix, ü(t) ∈ R3n is a vector
of the temporal second derivatives of the displacements u, i.e., the
accelerations, fint which can also be defined as the negative gra-
dient of an elastic potential fint(u) = −∇V (u) for V : R3n → R.
This potential maps displacements to the resulting internal restora-
tive forces of deformation, and fext ∈ R3n gives the possibly time-
varying external forces (e.g., gravity), contact and other forces. In
the following, we write t implicitly for brevity.

Newton’s second law yields a system of 3n equations that can be
discretized in time and solved for the full space simulation, a very
costly procedure for large meshes. Linear dimensionality reduction
restricts the configuration space to a k-dimensional subspace W of
R3n where k << 3n. This subspace can be parameterized by coef-
ficients q ∈ Rk by

u = Uq

Where U = [b1, ...,bk] ∈ R3n×k is matrix defined by a set of ba-
sis vectors {b1, ...,bk} which span W . Combining this with Equa-
tion (1) provides the reduced equations of motion

M̃q̈qq(t) = f̃int(q(t))+UT fext(t) (2)

Where M̃ = UT MU is the k × k reduced mass matrix, and
f̃int(q) = UT fint(Uq) are the reduced forces.
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Figure 4: An overview of our autoencoder network architecture.

Basis Construction. As mentioned in the related work, there are
two main approaches to construct the particular subspace W and its
associated basis U , either modal analysis and its extensions for a
subspace that requires little prior knowledge, or constructing a basis
from known deformation examples. Since the latter case is most
relevant to our work, we focus on that here. The aforementioned
review contains a detailed exposition of both cases [SB12].

Given a training set of N example deformations as displacements
T = [u1,u2, ...,uN ], we can employ PCA [SB12] to compute a basis
U which spans approximately the same space as T , where the size
of U can be chosen ahead of time, or determined based on some
chosen tolerance.

Reduced Force Approximation. Equation (2) is now a system of
k equations that can be solved much more efficiently. However, the
most costly component becomes evaluating the reduced internal
forces f̃int(q) which naively requires visiting every element in the
mesh to compute fint before projecting into W .

In some special cases f̃int can be computed efficiently and ex-
actly without reference to the full space, such as when using the
StVK energy [BJ05]. Unfortunately, there is no general procedure
to compute f̃int exactly for an arbitrary material model.

The work on optimized cubature introduced by [AKJ08] pro-
vides a method for approximating the reduced forces by determin-
ing a small set of elements C that, when given appropriate weights,
can be summed to approximate the full reduced force for a particu-
lar configuration.

f̃int(q)≈
|C|

∑
i=1

wi f̃i
int(q)

where w ∈ R|C| is a precomputed vector of weights and f̃i
int is the

reduced force resulting from element i alone. The particular method
for selecting the elements C and weights w has been improved by
subsequent authors [vTSSH13,YLX∗15,PBH15]. In this paper, we
chose to make use of the work by [AKJ08] because of their publicly
available implementation. In principle though, any other method
for cubature precomputation is compatible with our framework.

4. Nonlinear Reduced Model Learning

The linear model reduction approach can drastically reduce the size
of the solution space of a simulation, but there is still room for
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improvement. Consider the situation in Figure 2. Although a linear
subspace can reduce the DOFs required, the realized configuration
space actually lives on a smaller nonlinear manifold.

4.1. Dimensionality Reduction Using Autoencoders

We would like to address the problem of creating a nonlinear
parametrization ψ : Rr → R3n suitable for doing reduced model
simulation. There are several properties we would like such a map-
ping to have. Our goal is to create a reduction that captures the
nonlinearity specific to the data it is trained on, so we would like
to learn the mapping from provided data. Second, we would like
the mapping to be smooth, to avoid locking of the simulation. And
finally, it should be easily differentiable to enable solving the equa-
tions of motion efficiently.

The successful use of PCA in linear model reduction hints to-
wards using its nonlinear counterpart from the field of machine
learning, the autoencoder [HS06]. An autoencoder is constructed
by defining two parametric functions known as the encoder and the
decoder, denoted here as ψ : R3n→ Rr and ψ : Rr → R3n respec-
tively, with parameters chosen so that

u≈ ψ(ψ(u))

for a given pose u.

The functions are defined recursively with respect to ` layers of
function composition:

ψ(z) := ψ`(z) = f`(W` φ`−1(z)+b`) (3)

where f j : Rr j−1 → Rr j is the component-wise (typically non-
linear) activation function mapping its r j−1-long vector input to the
next layer’s r j-long vector input (base cases: r0 = r and r` = 3n),
each W j ∈ Rr j−1×r j is a matrix of weights and each b j ∈ Rr j is a
vector of offsets, also known as bias. The encoder has an analogous
recursive definition and set of parameters:

ψ(u) := ψ0(u) = f 0(W0 ψ1(q)+b0) (4)

where each layer has reversed dimensions of the decoder function:
ψ j : Rr j → Rr j−1 , f j : Rr j−1 → Rr j−1 , W j ∈ Rr j×r j−1 , and b j ∈
Rr j−1 .

Given this definition, one must choose layer sizes, network
depth, input and output dimensions, and activation functions to de-
termine the final structure of the network. These considerations will
be discussed in subsection 4.3.

4.2. Training Method

Given as input a set of N example displacements, [u1,u2, . . . ,uN ],
we determine the optimal parameters θ̂ of our encoder and decoder,
by minimizing the summed round-trip reconstruction loss of map-
ping each example displacement ui into the reduced (latent) space
of z values and back up to the space of displacements in a L2 sense:

θ̂ = argmin
θ

N

∑
i=1
‖ui−ψθ(ψθ(ui))‖2

2 (5)

Where instantiations of the encoder and decoder are written ψθ and
ψθ, while θ refers to all of the parameters, {W,W,b,b}, taken to-
gether. We minimize our loss using ADAM [KB14], with gradients

Full Space MSE vs Training Epoch
Random Weights

PCA Initialized

PCA Initialized (Frozen)

PCA Space Loss

5D PCA Only

Figure 5: We recorded the full-space MSE evaluated over the entire
training set at the end of each epoch. Orange: Randomly initial-
ized weights trained in full space. Yellow: PCA initialized weights
allowed to change during training in full space. Dark Blue: PCA
initialized weights frozen while training in full space. Light Blue:
Loss computed in PCA coefficients.

computed via the automatic differentiation (autodiff) framework
TENSORFLOW [AAB∗15] and KERAS [C∗15]. We chose TENSOR-
FLOW as the underlying autodiff framework due to it’s support for
high-performance C++ model deployment.

Unfortunately, training this network as it is with randomly ini-
tialized weights and an output variable for every single degree of
freedom in the mesh yields unacceptable visual results and simu-
lation behaviour, fraught with high-frequency artifacts (Figure 5).
This is because our model must predict individual values for ev-
ery single vertex displacement without any knowledge of their sig-
nificant correlation. Also, the mean-squared error (MSE) alone is
insensitive to these small yet salient perturbations in surface ge-
ometry. Although applying a regularizing term to the loss to in-
form the model of the correlation between vertices may be pos-
sible, we found that using PCA to reduce the size of the out-
put for our network is highly effective. This technique has origi-
nated in the machine learning literature [KRMW14] and has also
been used recently for other neural net models of mesh anima-
tion [LKA∗17, BODO18].

It may seem counter-intuitive to perform PCA since this is pre-
cisely the technique we are trying to improve on. However, it is
the final non-linear degrees of freedom that we are interested in. It
makes no difference if one step in our pipeline is linear, as long as
we choose a PCA basis large enough to capture all of the possible
deformations we are interested in.

After performing PCA on the training data, we get a basis U ∈
R3n×k. The matrices UT and U can be seen as initializing the first
and last layers of our network respectively, so our decoder becomes

ψ(z) = Uφ(z) (6)

where φ : Rk→R3n is the strictly nonlinear portion of our network.

Although the weights computed to initialize U can be fur-
ther modified during optimization, we found a significant training
speedup by computing our loss directly in the reduced coordinates,
without any reduction in quality( Figure 5). The form of our final
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Training Error×10-2 Step Time (ms) 

# Hidden Layers

Figure 6: Here we depict the trade-off between accuracy and speed
with increasing model depth. Lower is better on both axes.

training objective is therefore written as

θ̂ = argmin
θ

N

∑
i=1

∥∥∥UT ui−φθ(φθ(U
T ui))

∥∥∥2

2
(7)

where all of the UT ui are precomputed. Our final model architec-
ture can be seen in Figure 4.

4.3. Model Parameters

The choice of activation function has important implications to per-
formance and training. In our case, the activations on the input and
output layers were left as identity, since potential displacements
are unbounded. For the rest of the network, we experimented with
many of the most popular nonlinear activation functions such as
sigmoid, tanh, ReLU, etc. We found that although ReLU is the
simplest and most efficient, it produces simulation artifacts as can
be seen in our video. The exponential linear unit (ELU) is essen-
tially a smoothed ReLU function which makes it differentiable ev-
erywhere. We found ELU provided the best compromise between
simulation and training performance.

ELU(x) =

{
x if x >= 0
ex−1 if x < 0

As for layer size and count, we found that two hidden layers of
width 100 provided the best tradeoff between training accuracy and
simulation speed as can be seen in Figure 6. This result mirrors that
of other recent works such as [BODO18] which found only two
layers to be sufficient after PCA reduction.

The final parameters to choose are the size of the encoded vec-
tor r, and the number of basis vectors k we retain from PCA.
These parameters determine to what level of accuracy the autoen-
coder can represent a given data set. Figure 7 shows that for a
fixed latent space dimension r , increasing PCA dimension k de-
creases the overall error up to a certain “saturation” point, and
vice versa. For our examples, we retain enough basis vectors k
such that the maximum per-vertex displacement reconstruction-

error maxi

∥∥∥ui−UUT ui

∥∥∥2

2
is under a user-determined error thresh-

old.

PCA Dimension

Latent Dimension log Training Error 

Figure 7: Training error is visualized in relationship latent vector
size, and number of PCA basis vectors. The noise present in the
plot is a result of the gradient-descent training procedure.

Since the outer PCA layers limits the minimum possible achiev-
able error, we choose a second larger tolerance level and then find
the specific value of r which meets the tolerance by starting with
an appropriate guess, typically around k/2, and iteratively training
our model with larger values of r until the error is achieved.

In our case we opted for an absolute error tolerances of 3mm and
6mm respectively. We chose this error approach because it provides
a more intuitive understanding of the degree to which the training
set is captured. All of our meshes were on a length scale of about
15cm.

In the course of our experiments, we considered the use of more
advanced autoencoder architectures such as the denoising autoen-
coder [VLBM08] and the variational autoencoder [KW13]. How-
ever, we found that although these alternatives are compatible with
our method, the plain autoencoder architecture we described per-
forms the best in terms of simulation quality and speed.

4.4. Training Data Generation

We are agnostic to the source of our training data, as long as the
examples are representative of achievable configurations in the de-
sired material model. Since our goal is to generate a non-linear
reduced space that describes very specific scenarios, we use sim-
ulation snapshots generated by recording user interactions with a
coarse mesh and replay the interaction forces onto the full resolu-
tion domain object (Figure 8) similar to the approach of [BJ05].
We use TetWild [HZG∗18] to generate the volumetric meshes from
surface meshes obtained from the Stanford 3D Scanning Reposi-
tory or modeled from scratch.

Using this approach we generated high quality deformation
spaces from just 500-1000 frames of simulation without subsam-
pling or interpolating simulation frames. During training, con-
vergence was typically achieved after 2000-3000 epochs with a
batch size of 256 and a learning rate of 0.001. Other parameters
of ADAM were left at the defaults described in the original pa-
per [KB14]. Due to the small size of our networks, the gradient
descent portion of our pipeline takes no longer than 10 minutes.
All training and performance times are listed in Table 1.
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Interactive Model Offline Replay

Figure 8: Left: User interacts with a low-resolution (6k tetrahe-
dra) dragon for real-time training pose generation. Right: Snapshot
from high resolution (430k tetrahedra) simulation where external
forces are replayed to generate final training poses.

5. Latent-space Dynamics

In this section, we present the equations of motion in terms of the
autoencoder latent variables and describe an approach to discretize
and solve in time.

5.1. Implicit Integration in the Latent-space

Direct substitution of ψ(z) into Equation 1 is problematic, since
the nonlinear nature of our reduced space would require evaluat-
ing high order derivatives of our decoder network. This is a costly
operation we would prefer to avoid.

Instead we build on the energy-diminishing integrator for-
malism [SH98] which has become popular in computer graph-
ics [MTGG11, PBH15, LBK17] since it allows us to express stable
implicit Euler integration as a minimization problem.

Following [MTGG11,PBH15] the Euclidean space timestepping
equation is expressed as follows:

un+1 = argmin
u

1
2h2 ‖u−un− u̇nh‖2

M +V (u) (8)

Where h is the chosen timestep and V is the elastic potential energy
leading to the internal restorative forces in the original formulation.
We omit the external force term for clarity of exposition and since
it can alternatively be defined as a component of the energy. In
order to solve this problem using our reduced space, we reformulate
the optimization at the position level using the substitution u̇n =
1
h (un−un−1) and optimize over z via the relationship u = ψ(z).

zn+1 = argmin
z

1
2h2 ‖ψ(z)−2un +un−1‖2

M +V (ψ(z)) (9)

This allows us to find a solution in our reduced space, but still suf-
fers from the requirement of evaluating a costly full-space mass-
matrix product and maintaining the full space states un and un−1.

Our key insight is that since the outer layer of our autoencoder is
a linear transformation, we need only partially decode the current
pose using the nonlinear portion of our network described in Equa-
tion 6 and assign it to q ∈Rk and multiply it with our precomputed
partially reduced mass matrix M̃ ∈ Rk×k

q = φ(z) (10)

M̃ = UT MU (11)

Iteration
250 5000

L-BFGS Quasi-static ConvergenceObjective Value×10-5 

Autoencoder (ours) 563ms
Linear Subspace 961ms
Full Space 4376ms

Figure 9: A comparison of the L-BFGS convergence rate between
the full space, a PCA only subspace, and our latent space where di-
mensions were chosen for approximately equal training error. Each
solve was preconditioned with the rest-pose hessian, except for the
Autoencoder which was preconditioned using Equation 15 at the
starting pose.

So our objective, written here as E, and timestepping equation fi-
nally becomes

E(z,qn,qn−1) =
1

2h2 ‖φ(z)−2qn +qn−1‖2
M̃ +V (ψ(z))

zn+1 = argmin
z

E(z,qn,qn−1) (12)

5.2. Jacobian Evaluation and Solving with L-BFGS

One approach to minimizing Equation 12 would be to use a New-
ton’s search [NW06]. However this again would require evaluating
high-order derivatives of φ(z) which we are trying to avoid. Instead
we rely on the popular Quasi-Newton method L-BFGS [BNS94]
which has been successfully used to efficiently solve mechanics
equations [MS79] and has recently shown promise for real-time
deformable body simulation [LBK17].

We begin by evaluating the gradient of our objective in Equa-
tion 12 which is as follows:

∂E
∂z

=
1
h2 JT

z M̃(φ(z)−2qn +qn−1)−JT
z UT fint(ψ(z)) (13)

Evaluating the Jacobian of our network J = ∂φ

∂z is a potentially
costly procedure. Naively, one could use the auto-differentiation
framework to compute the Jacobian matrix one row at a time. Using
the reverse-mode differentiation standard in TENSORFLOW, this
would be an O(k2) operation, since evaluation of the gradient for
a single output variable is the same complexity as evaluating the
original network O(k).

However, we observe that constructing the Jacobian matrix ex-
plicitly is not necessary. We need only implement a function to
directly compute the action of this matrix against a given vector
v ∈ Rk

vjp(v,z) = JT
z v (14)
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also known as the vector-Jacobian product.

This is a standard operation in autodiff frameworks which sup-
port forward-mode, and has equivalent complexity to a single gra-
dient evaluation with respect to an input variable O(k). Unfortu-
nately our chosen framework does not directly support forward-
mode autodiff, but we were able to employ the workaround de-
scribed by [Tow17]. Evaluating the resulting Jacobian-vector prod-
uct operator scales linearly with the cost of evaluating the feed-
forward pass of the network itself.

L-BFGS uses gradient information to progressively refine an es-
timate of the Hessian of our cost function. With an initial guess of
Identity, and warm starting with the previous timestep’s solution,
L-BFGS can solve our time step optimization problem reasonably
quickly. However, we can increase its overall performance by warm
staring the Hessian approximation. In our case we warm start each
L-BFGS iteration with

H̃ = JT
zn K̃0Jzn (15)

where K̃0 = UT K0U , K0 =
∂

2V(0)
∂u2 is the reduced stiffness matrix

at the objects rest state and Jzn is the Jacobian of φ(z) evaluated at
the beginning of the current time step. Computing H̃ requires con-
structing the full autoencoder Jacobian by making r calls to our
Jacobian-vector product function. However, this cost is minimal
since we only construct it once at the begining of the optimization
procedure. Furthermore, H̃ is a matrix in our fully reduced space
making it very fast to solve against. In our implementation we fac-
torize the matrix at the beginning of the L-BFGS loop and then
perform a single back solve per iteration.

We modified an open-source L-BFGS implementation for
C++ [Qiu16] to enable our pre-conditioner. The included back-
tracking line-search satisfying the Wolfe conditions was used and
the window size for the Hessian approximation was set to 8. Our
criteria for convergence is given by ‖∇E‖2 < ε ·max(‖z‖2,1.0)
with ε = 10−8. A convergence comparison without cubature be-
tween our space, PCA only, and the full space can be seen in Fig-
ure 9.

5.3. Discrete cubature acceleration

Now that we have an efficient way of minimizing Equation 12, the
key performance bottleneck rests on the computation of the full
space energy V(ψ(z)) and the projection of its negative gradient
the internal forces fint(ψ(z)). Direct computation of the full elastic
potential gradient ∂V

∂u ∈ R3n is by necessity at least O(n). A typical
finite-element elastic potential and its gradient are written as a sum-
mation over potential contributions from each of the m elements of
the mesh:

V (u) =
m

∑
i=1

Vi(u) and
∂V
∂u

=
m

∑
i=1

∂Vi

∂u
, (16)

where Vi : R3n→ R maps displacements to the contribution of the
ith element.

Ideally, one could produce an analytical expression for the en-
ergy and forces directly in terms of the reduced coordinates. Even
the most successful implementation of this approach in [BJ05] re-
sults in cubic time and space complexity, as well as being restricted

Time

PCA

Ours

Figure 10: Using only a single cubature point chosen by [AKJ08]
(left) results in large deformation artifacts for the 6 dimensional
linear subspace (top). Our autoencoder can operate with just 2 de-
grees of freedom and maintain high deformation fidelity.

to only the StVK material. This approach would be further com-
plicated due to our coordinates being decoded through a complex
and nonlinear function. Therefore, we turn to an approximate cu-
bature-based approach pioneered by [AKJ08] and expanded upon
by many others [vTSSH13, YLX∗15, PBH15].

The summations over all elements may be approximated by a
weighted, truncated summation, i.e., cubature method, over a sub-
set S⊆ {1, . . . ,m} of |S| ≤ m elements:

V (u)≈ ∑
i∈S

wiVi(u) and
∂Vi

∂u
≈ ∑

i∈S
wi

∂ei

∂u
, (17)

Where only the vertices in u corresponding to selected elements
need be decoded, which we write as ū = Ūq. A successful cuba-
ture method will carefully select a fixed subset S and corresponding
weights w so that approximation error is minimized for any typical
displacement u. In our case, we employ the algorithm described
by [AKJ08] due to their freely available implementation. However,
in principle our method is compatible with any cubature element
selection algorithm and may benefit from more advanced selection
techniques already mentioned.

The cubature optimization scheme we used requires the use of
a linear subspace. For this, we used U on the outside layer of our
network, with a relative error target of 0.05 or a maximum of 500
sample points. Although the optimized cubature method was de-
signed specifically to approximate the reduced forces, we found
that re-using the weights when doing a weighted sum of the energy
(Equation 17) also provided a good approximation.

We found that when using models with very few latent degrees
of freedom, far fewer cubature points than those chosen for the lin-
ear space can be used while retaining stability, as can be seen in
Figure 10. This suggests a promising direction for future work on
choosing cubature points based on the nonlinear degrees of free-
dom. However, for the sake of performance comparisons in this
investigation, we use equal numbers of cubature points.

c© 2019 The Author(s)
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Linear Subspace Autoencoder (ours)

No Cubature

Cubature [AKJ08]

Figure 11: Comparison of PCA subspace (orange #dof=29) and
10dof Autoencoder reduced space (blue #dof=10) with full-space
simulation (transparent red #dof=83268, 430k tetrahedra) with
and without cubature enabled and a Young’s modulus of 105Pa.
High quality correspondence is achieved in both cases, however
our method achieves a ∼1.2× performance advantage over PCA
alone (157Hz vs 185Hz).

The un-optimized pseudo code for our final algorithm can be
seen for the timestepper in algorithm 1 and for the objective func-
tion in algorithm 2.

6. Results & Discussion

In this section we demonstrate some of the advantages of perform-
ing reduced deformable simulation in our autoencoder latent-space.

6.1. Robustness and Visual Quality

During our experiments we found that we could choose a latent di-
mension r approaching the true minimum DOFs in a system. Take
for example the catapult in Figure 10. Our model is able to repre-
sent the large nonlinear bending deformation with only 2 DOFs. To
achieve a similar level of accuracy with PCA alone, at least 6 DOFs
are required. The surprising benefit of this highly-reduced space is
that there is little room for non-physical configurations to be repre-
sented. As a consequence, we are able to get away with using only
a single cubature point during simulation and still maintain believ-
able results. In contrast, the 6 DOF linear subspace diverges wildly
from any reasonable deformation.

When comparing against a full space simulation(Figure 11), we
found that our nonlinear reduced space qualitatively performed at
least as well as a linear space alone when kp was chosen to match
for training error. In addition, our nonlinear space achieves an aver-
age 1.2× performance advantage when using the same number of
cubature points. This is done while operating on an object that is
an order-of-magnitude stiffer (in terms of Young’s Modulus) than
those reported in previous reduced simulation works for large de-
formation [vTSSH13]. However, as can be seen in the figure, when
cubature is enabled, the accuracy of both the linear and autoencoder

Avg. Time per E Evalutation
Time (ms) Time (ms)

Avg. Time per Timestep

cubature
evaluation

cubature
decode

vjp(z,v)

ϕ(z)

×28 Avg. Evaluations

×9.3 Avg. Evaluations

preconditioner
cost

PCA Autoencoder PCA Autoencoder

Figure 12: This plot shows a breakdown of the primary time costs
of our algorithm compared to PCA alone. Left: The average times
for a single evaluation of the objective. Right: The average times
across an entire timestep. The armadillo example was used to gen-
erate these plots.

simulations suffer. We attribute this defect to the cubature method
employed, and expect that this effect would vanish if one used a
more advanced method such as [VTSSH15], or took into account
information about the latent space while training.

Compared to previous reduced space methods such as rotation-
strain coordinates [PBH15], our nonlinear formulation of the re-
duced space precludes the need to tune material parameters to
achieve agreement with the full space as seen in Figure 14. Our
method also allows material parameters to be changed after train-
ing, as long as the examples used to create the deformation space
contain the poses desired.

6.2. Performance

When choosing a linear PCA-based subspace to compare against, it
is important to consider what size basis kp to use. There are many
factors to consider, such as qualitative appearance during simula-
tion, performance, achieved training error etc. In our performance
comparisons, we chose kp such that the maximum per-vertex recon-
struction error falls within 0.1mm of the autoencoder reconstruc-
tion error. In some cases, this results in choosing kp that is equal
to the outer dimension of the autoencoder k given a large enough
latent dimension r, such as in Figure 13. All of our models use the
NeoHookean material model as implemented in GAUSS [Lev18],
however this could easily be replaced with another energy.

Figure 13 shows a frame generated via interactive manipulation
of our 164k element Armadillo mesh. Notice that even a small
number of latent degrees-of-freedom can generate expressive an-
imations as seen in our video, featuring independent manipulation
of the armadillo’s arms and legs. In this example the average per-
formance gain is an average of 1.7× more timesteps per second.
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PCA Only Autoencoder (ours)

62dof, 95Hz 20dof, 159Hz

Figure 13: A performance comparison for a 164k tetrahedra ar-
madillo model. Our autoencoder space achieves equivalent train-
ing error with only 20 DOFs compared to the 62 needed for PCA
alone.

As seen in Figure 12, a single objective evaluation in our latent-
space is more costly than PCA alone due to the additional decode
and vector-Jacobian product operations. However, the nonlinear na-
ture of the latent-space drastically reduces the number of L-BFGS
iterations needed to converge. The intuition being that a small step
in z space can create a large and non-linear effect in displacements,
where as small steps in q are still inherently linear and thus less
dramatic, making walking in z space more efficient.

Performance numbers reported in these figures refer to the time
required to compute a full timestep not including rendering. Visu-
alizing a mesh requires fully decoding the displacements of all sur-
face vertices, and if performed on the CPU can cause a significant
slowdown for large meshes. Therefore we chose to decode the dis-
placements, that is u = UT q, on the GPU using our vertex-shader.
This easily gives us a fixed 60 frames per second on all studied ex-
amples. Further performance details for each model can be found
in Table 1.

Training data was generated using an Intel Core i7-4770 CPU
@ 3.40GHz with 16GB memory. The Autoencoder was trained us-
ing an Nvidia GeForce GTX 970 GPU and reduced space simula-
tion was done entirely with CPU on a system with dual Intel Xeon
E5-2637 v3 3.50GHz processors and 64GB RAM. Our code is im-
plemented in C++ for the runtime portion and has not been opti-
mized beyond multithreading using OpenMP and the Eigen linear
algebra library. We did not implement GPU support for simulation
computations other than performing Uq in the shader during ren-
dering. We compare against our own implementations of linear re-
duced space and full simulation. All of our examples use the Neo-
Hookean material model implemented in GAUSS [Lev18], how-
ever this could easily be replaced with another energy.

We also performed a comparison between the L-BFGS solver
and a fully-implicit Newton solver for the PCA-only subspace, ow-
ing to the availability of the Hessian in this case. We found that
fewer iterations were required for equivalent convergence crite-
ria of ε = 10−8. However, the additional cost of constructing the

Full Space: E =10⁵Pa  

Autoencoder: E =10⁵Pa  

Figure 14: A full space bar (left) with a Young’s modulus of 105Pa
is compared to a bar simulated in our latent space. A nearly visu-
ally indistinguishable match is achieved without tuning any mate-
rial parameters.

reduced stiffness matrix (including cubature) causes the Newton
based approach to perform approximately 1.3 times slower than
the L-BFGS solver. This reflects recent results showing that Quasi-
Newton approaches generally provide equal or greater perfor-
mance in real-time applications for unreduced dynamics [LBK17,
WY16]. Other reduced methods have also favored quasi-Newton
approaches to avoid expensive hessian construction and inversion
[vTSSH13].

7. Limitations & Future Work

In this paper we have presented the first neural network-based,
non-linear reduced space simulation of large-deformation elastic
dynamics. One of the most surprising results of this work is how
modest the performance improvement is over linear, reduced mod-
els Figure 12. However, being a new method, we feel that there
are many opportunities to address this, each one being an excit-
ing avenue of future work. As seen in our catapult example, even
a single element can provide enough stability for simulation in
our small latent-spaces. Therefore, developing a cubature approach
which takes advantage of latent-space information, or loosens re-
quirements such as weight non-negativity, when choosing weights
and elements, could allow us to rely on much fewer cubature el-
ements and consequently increase performance. Furthermore ap-
plying optimizations such as evaluating our network decode and
Jacobian on the GPU during runtime could further close the per-
evaluation performance gap.

As can be seen in Figure 15, we inherit some of the problems
from traditional subspace simulation such as the lack of local de-
formations not included in the training data, or more generally be-
ing able to represent poses not included in the training data. Fur-
thermore, we require physically plausible deformation examples to
train our network. This restricts us to use cases where the desired
deformation is known in advance and can be precomputed. It would
be highly desirable to adapt the work on modal analysis and its ex-
tensions such as modal derivatives [BJ05] to our reduced spaces
to enable simulation without specific knowledge about the desired
deformations. There is a wealth of other existing work done to im-
prove and extend linear subspace simulation such as rigid floating-
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OursFull Space

localized force

global
effect

Rest shape

Figure 15: A localized force is applied to the arm of the elephant.
The full space simulation (left) shoes a corresponding local de-
formation, whereas our reduced space (right) cannot represent the
produced bump, instead directing the energy into a small movement
of the trunk.

frames, collisions, sub-structuring, etc. that is in principle compat-
ible with our method.

Also observed in Figure 15 is that of global motion resulting
from locally applied forces. Pulling on the elephant’s arm causes
the trunk to wiggle slightly. This is because the encoded represen-
tation does not fully dis-entangle information about the trunk posi-
tion from the arm position using the provided training data. Simi-
larly, the space learned by our autoencoder is not always perfectly
smooth. This is particularly apparent in the video corresponding
to Figure 14. Exploring more complex neural network architectures
such as the variational autoencoder (VAE) [KW13], or initializing
outer layers with sparse modes rather than PCA is another poten-
tial direction of research, and may also prove useful in determining
the ideal latent dimension size r without expensive retraining of the
model.
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Algorithm 1: Simulation timestepping loop

Precompute M̃ and K̃0;
z0,z1← ψ(0);
q0,q1← 0;
n← 1;
while n≤ maxFrames do

J← Evaluate Autoencoder Jacobian at zn;
L← Cholesky prefactor H̃ = JT K̃0J;
zn+1,qn+1← L-BFGSminimize(E,zn,zn−1,L);
n← n+1;

end

Algorithm 2: Objective and gradient evaluation
E(z,qn,qn−1);
Input : Previous two timestep values for qi, the current

guess for z and cubature weights w and indices S;
Output: The objective value denoted by x and the gradient g;
q← φ(z);
ū← Ūq displacements for only cubature elements in S;
V , f← 0;
for i,wi in S,w do

V ←V +wiVi(ū);
f← f+wi f̃i

int(ū);
end
x← 1

2 qT M̃q+h2V ;
g← vjp(M̃q−h2 f̃int,z);
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[BZ11] BARBIČ J., ZHAO Y.: Real-time large-deformation substructur-
ing. ACM Trans. Graph. 30, 4 (July 2011), 3

[C∗15] CHOLLET F., ET AL.: Keras. https://github.com/
keras-team/keras, 5

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/keras-team/keras
https://github.com/keras-team/keras


Lawson Fulton & Vismay Modi & David Duvenaud & David I. W. Levin & Alec Jacobson / Latent-space Dynamics for Reduced Deformable Simulation

Model Ntet AE(s) PCA(s) Cubature(s) |S| kp r,(k) PCA Step(ms) AE Step(ms)

Beam 45151 266 10 1493 503 23 10 (27) 11.0 8.6
X 29686 290 34 9083 359 13 6 (19) 5.2 4.6
Armadillo 164249 192 38 3360 401 62 20 (62) 10.5 6.30
Dragon 429740 60 46 40493 197 25 11 (29) 7.2 6.7
Elephant 61699 136 5 54 28 18 7 (28) 4.2 4.2

Table 1: From left to right: Model name, number of mesh elements, autoencoder training time, time taken to compute the PCA basis, cubature
training time, # of cubature elements, size of PCA-only basis with equivalent error, autoencoder latent-space dimension (outer PCA space
dimension), PCA only timestep time, autoencoder timestep time.

[CBW∗18] CHEN J., BAO H., WANG T., DESBRUN M., HUANG J.: Nu-
merical coarsening using discontinuous shape functions. ACM Trans.
Graph. 37, 4 (July 2018), 3

[CLMK17] CHEN D., LEVIN D. I. W., MATUSIK W., KAUFMAN
D. M.: Dynamics-aware numerical coarsening for fabrication design.
ACM Trans. Graph. 36, 4 (July 2017), 2, 3

[CLSM15] CHEN D., LEVIN D. I. W., SUEDA S., MATUSIK W.: Data-
driven finite elements for geometry and material design. ACM Trans.
Graph. 34, 4 (July 2015), 3

[CO18] CASAS D., OTADUY M. A.: Learning nonlinear soft-tissue dy-
namics for interactive avatars. Proc. ACM Comput. Graph. Interact.
Tech. 1, 1 (July 2018), 3

[CT17] CHU M., THUEREY N.: Data-Driven Synthesis of Smoke Flows
with CNN-based Feature Descriptors. Transaction on Graphics (SIG-
GRAPH) 36(4) (Apr 2017), 3

[DG96] DESBRUN M., GASCUEL M.-P.: Smoothed particles: A new
paradigm for animating highly deformable bodies. In Proceedings of
the Eurographics Workshop on Computer Animation and Simulation ’96
(Berlin, Heidelberg, 1996), Springer-Verlag, 2

[FGBP11] FAURE F., GILLES B., BOUSQUET G., PAI D. K.: Sparse
Meshless Models of Complex Deformable Solids. 3

[GBFP11] GILLES B., BOUSQUET G., FAURE F., PAI D. K.: Frame-
based elastic models. ACM Trans. Graph. 30, 2 (Apr. 2011), 3

[HLW06] HAIRER E., LUBICH C., WANNER G.: Geometric numeri-
cal integration: structure-preserving algorithms for ordinary differential
equations, vol. 31. Springer Science & Business Media, 4

[HMT∗12] HAHN F., MARTIN S., THOMASZEWSKI B., SUMNER R.,
COROS S., GROSS M.: Rig-space physics. ACM Trans. Graph. 31, 4
(July 2012), 3, 4

[HS06] HINTON G. E., SALAKHUTDINOV R. R.: Reducing the dimen-
sionality of data with neural networks. Science 313, 5786 (2006), 5

[HTC∗14] HAHN F., THOMASZEWSKI B., COROS S., SUMNER R. W.,
COLE F., MEYER M., DEROSE T., GROSS M.: Subspace clothing sim-
ulation using adaptive bases. ACM Trans. Graph. 33, 4 (July 2014), 3

[HTZ∗11] HUANG J., TONG Y., ZHOU K., BAO H., DESBRUN M.: In-
teractive shape interpolation through controllable dynamic deformation.
IEEE Transactions on Visualization and Computer Graphics 17, 7 (July
2011), 3

[HZG∗18] HU Y., ZHOU Q., GAO X., JACOBSON A., ZORIN D.,
PANOZZO D.: Tetrahedral meshing in the wild. ACM Trans. Graph.
37 (2018), 6
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