Latent-space Dynamics for Reduced Deformable Simulation

Lawson Fulton^{1,2}, Vismay Modi¹, David Duvenaud¹, David I.W. Levin¹, Alec Jacobson¹

¹ University of Toronto, Canada

² MESH Consultants, Canada

Why deformable simulation?

Research Question

Can we use machine learning to accelerate hyperelastic simulation?

Related Work

Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow Wiewel et al. 2019

Deep Fluids – A Generative Network for Parameterized Fluid Simulations Kim et al. 2019

Learn how to update the latent state of a system

Related Work

DeepWarp: DNN-based Nonlinear Deformation

Luo et al. 2018 **Neural Material: Learning Elastic Constitutive Material and Damping Models from Sparse Data** Wang et al. 2018 StVK Neural Nominal NeoHookean Model Neural Network Coarsening Damping

Learn correction to cheap simulation

Our Approach

Build on the vast literature of Model Reduction

Simulate in nonlinear latent space using the **true** equations of motion

First, why is it slow?

Solver

Fast and stable solution: Implicit Euler as a minimization problem

Solve using pre-conditioned quasi-newton solver like L-BFGS

Existing Work: Model Reduction

Reduced Coordinates

Model Reduction

Replace high-dimensional problem with low-dimensional

Static Solve Example

Full Linear

Iterations **n**

Where does **U** come from?

Model Reduction - Example

Model Reduction - Example

Collect Snapshots

$$\mathbf{P} = [\mathbf{u}_1 \mathbf{u}_2 \mathbf{u}_3 \mathbf{u}_4]$$

$$\mathbf{P} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

Keep *k* largest eigen values

$$\mathbf{U} := \mathbf{U}_{1:k}$$

Model Reduction - Example

$$\mathbf{u} = \mathbf{U}\mathbf{q}$$

Collect Snapshots

$$\mathbf{P} = [\mathbf{u}_1 \mathbf{u}_2 \mathbf{u}_3 \mathbf{u}_4]$$

$$\mathbf{P} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

Keep *k* largest eigen values

$$\mathbf{U} := \mathbf{U}_{1:k}$$

k = 62

Limits to Linear Reduction

Full Space

Limits to Linear Reduction

6 Degrees of Freedom

Can we do better?

Linear: 6 DOF Nonlinear: 6 DOF

Our Contribution

Many possibilities for $nonlinear(\mathbf{z})$

We use a neural network trained as an <code>Autoencoder</code> to create a unique $nonlinear(\mathbf{z})$ for a given scenario

Autoencoders

$$encode(\mathbf{u}) = \mathbf{z}$$

$$decode(\mathbf{z}) = \tilde{\mathbf{u}}$$

Encoded "Latent" vector Z

Decode is a sequence of function applications

$$decode_k(\mathbf{z}) = activation(\mathbf{z}^T \mathbf{W}_{\theta} + \mathbf{b})$$

Optimize the weights $\mathbf{W}_{ heta}$ by automatic differentiation and gradient descent

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \|\operatorname{decode}(\operatorname{encode}(\mathbf{u}_i)) - \mathbf{u}_i\|_2^2$$

Minimize Mean Squared Error with ADAM

Training directly on full mesh results in long training times and poor approximation

Previous work: last layer of network is **linear**, so just initialize it with PCA

We observe you can train directly in the PCA space and get equivalent results.

Our Training Pipeline

N

$$\mathbf{U} = \mathrm{PCA}([\mathbf{u}_1 \ldots \mathbf{u}_N], k)$$
 Do PCA on snapshots

$$[\mathbf{q}_1 \dots \mathbf{q}_N] = \mathbf{U}^T [\mathbf{u}_1 \dots \mathbf{u}_N]$$
 Project training samples

Train autoencoder to reduce the PCA coefficients further

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{r} \|\operatorname{decode}(\operatorname{encode}(\mathbf{q}_i)) - \mathbf{q}_i\|_2^2$$

\mathbf{u}

High Dimensional System

$$\mathbf{q} = \mathbf{U}^T \mathbf{u}$$
 , $\mathbf{u} = \mathbf{U} \mathbf{q}$ Low Dimensional System

$$\mathbf{z} = \operatorname{encode}(\mathbf{q})$$
 $\mathbf{q} = \operatorname{decode}(\mathbf{z})$

Tiny Dimensional System

Convergence Rate

Latent Space Dynamics

$$\mathbf{u}_{n+1} = \underset{\mathsf{Big}}{\operatorname{argmin}} E(\mathbf{u})$$
 $\mathbf{z}_{n+1} = \underset{\mathsf{Small}(\mathsf{er})}{\operatorname{argmin}} E(\mathbf{U} \operatorname{decode}(\mathbf{z}))$

How do we make it fast?

Recall our objective function:

$$E(\mathbf{z}) = V(\mathbf{U}\operatorname{decode}(\mathbf{z})) + I(\mathbf{U}\operatorname{decode}(\mathbf{z}), \mathbf{u}_n, \dot{\mathbf{u}}_n)$$
Elastic Potential

Inertia Term

$$I = \frac{1}{2h^2} \left\| \mathbf{u} - \mathbf{u}_n - \dot{\mathbf{u}}_n h \right\|_{\mathbf{M}}^2$$

$$I = \frac{1}{2h^2} \left\| \mathbf{U} \operatorname{decode}(\mathbf{z}) - \mathbf{u}_n - \dot{\mathbf{u}}_n h \right\|_{\mathbf{M}}^2$$

Precompute $\mathbf{U}^T\mathbf{M}\mathbf{U}$ and only partially decode

$$I = \frac{1}{2h^2} \left\| \operatorname{decode}(\mathbf{z}) - \mathbf{q}_n - \dot{\mathbf{q}}_n h \right\|_{\mathbf{U}^T \mathbf{M} \mathbf{U}}^2$$

Save as \mathbf{q}_n for next timestep

How do we make it fast?

Recall our objective function:

$$E(\mathbf{z}) = V(\mathbf{U}\operatorname{decode}(\mathbf{z})) + I(\mathbf{U}\operatorname{decode}(\mathbf{z}), \mathbf{u}_n, \dot{\mathbf{u}}_n)$$
Elastic Potential

Inertia Term

Cubature

$$V(\mathbf{u}) = \sum_{i=1}^{\text{\# Tets}} V_i(\mathbf{u})$$

Cubature

$$V(\mathbf{u}) = \sum_{i=1}^{\# \text{Tets}} V_i(\mathbf{u})$$

Approximate with weighted sum

$$V(\mathbf{u}) \approx \sum_{i \in S} w_i V_i(\mathbf{u})$$

Use [An et al. 08]'s "Optimized Cubature"

Only fully-decode elements we need

Results: Stability

Single Cubature Point

Results: Stability

2 dof Autoencoder subspace (ours)

Results: Stability

And finally $\nabla E(\mathbf{z})$

Only the gradient of our objective is required since using a quasi-Newton scheme

$$\nabla E(\mathbf{z}) = \mathbf{J}_{\mathrm{decode}}^T \frac{\partial E}{\partial \mathbf{q}}$$

$$\mathbf{J}_{\mathrm{decode}}^T \text{Non-constant Jacobian matrix of our autoencoder}$$

Automatic differentiation allows us to evaluate $\mathbf{J}_{ ext{decode}}^{T}\mathbf{v}$ with equivalent complexity as a single forward evaluation

Results: Performance

PCA - 62 dof

95Hz

Ours - 20 dof

159 Hz

Results: Accuracy

Full-space Comparison

Without Cubature Acceleration

Limitations

Summary

 Autoencoders can reduce system dimensionality further than linear alone.

This reduction allows faster simulation

Results are robust, even for small spaces and few cubature points.

Future Work

Can we incorporate cubature into our method?

Future Work

Can we incorporate cubature into our method?

One network, many shapes?

Automatic training data generation?

Acknowledgements

- NSERC Discovery Grants (RGPIN-2017-05235, RGPIN-2017-05524, RGPAS-2017-507938, RGPAS-2017-507909)
- Connaught Funds (NR2016–17)
- Canada Research Chairs Program
- Gifts from the Fields Institute, Adobe Systems Inc, Autodesk Inc, and MESH Inc.
- Sarah Kushner for help with figure creation

Thank you for listening!

Latent-space Dynamics for Reduced Deformable Simulation

Lawson Fulton, Vismay Modi, David Duvenaud, David I.W. Levin, Alec Jacobson University of Toronto

Contact: lawson@cs.toronto.edu

Project Page: bit.ly/2V3U9Kv

Training Data

Training data generation

Choice of Activation

ReLU Activations

Preconditioner

$$\tilde{\mathbf{H}} = \mathbf{J}_{\mathbf{z}_n}^T \tilde{\mathbf{K}}_0 \mathbf{J}_{\mathbf{z}_n}$$

$$\tilde{\mathbf{K}}_0 = U^T \mathbf{K}_0 U$$

$$\mathbf{K}_0 = \frac{\partial^2 \mathbf{V}(\mathbf{0})}{\partial \mathbf{u}^2}$$

