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Why deformable simulation?
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Research Question

Can we use machine learning to accelerate
hyperelastic simulation?
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Related Work

Latent-space Physics: Towards Learning
the Temporal Evolution of Fluid Flow

Wiewel et al. 2019
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Deep Fluids — A Generative Network for
Parameterized Fluid Simulations
Kim et al. 2019
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Generative Fluid CNN

Learn how to update the latent state of a system
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Related Work

DeepWarp: DNN-based Nonlinear Deformation
Luo et al. 2018

n

Neural Material: Learning Elastic Constitutive
Material and Damping Models from Sparse Data
Wang et al. 2018

Network

Learn correction to cheap simulation
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Our Approach

Build on the vast literature of Model Reduction

Simulate in nonlinear latent space using the true
equations of motion
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First, why is it slow?

n ~ 40,000 P1
P2
U =
_ Pn _
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Vertex Displacements

Solving large differential equation
F(u) = Mi
A
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Solver

Fast and stable solution: Implicit Euler as a minimization problem

Inertia Term

A
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u,.1 = argmin V(u) + I(u, u,, u,)
u \ Y ) l Y }
Elastic Potential Previous State
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un_|_]_ — argmin E(l].) Objective Function
u

New configuration

Solve using pre-conditioned quasi-newton solver like L-BFGS
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Existing Work: Model Reduction

High
Dimensional
System

Al

Low
q < I2atal Dimensional
- System

Reduced Coordinates
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Model Reduction

Replace high-dimensional problem with low-dimensional

u,1 = argmin F(u)

u
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Big

Becomes

Qni1 = argfnin E(Uq)
q

Small
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Static Solve Example

Full Linear

lterations
0




Where does TU come from?
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Model Reduction - Example




Model Reduction - Example

Collect Snapshots

P = [ujususuy]

Perform PCA (via SVD)

P-=UXV’

Keep k largest eigen values

U := Ul:k
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Model Reduction - Example

Collect Snapshots

P = [ujususuy]

Perform PCA (via SVD)

q=1[91,92 P — UZVT

-
-
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Keep k largest eigen values
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u — Uq 4 U = Ul:k
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Limits to Linear Reduction

Full Space
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Limits to Linear Reduction

6 Degrees of Freedom
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Can we do better?

7 I R
@-----n- -
-0
R u = nonlinear(z)
q| > |z
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Linear: 6 DOF Nonlinear: 6 DOF
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Our Contribution

Many possibilities for nonlinear(z)

We use a neural network trained as an Autoencoder to
create a unique nonlmear(z) for a given scenario
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Autoencoders

encode(u) = z decode(z)
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Encoded “Latent” vector Z
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Decode is a sequence of function applications

decodey(z) = activation(z’ Wy + b)

activation(x)
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Optimize the weights VW 0 by automatic differentiation
and gradient descent

AR

0" = argmin Z | decode(encode(u;)) — w;|5
o =1
E Minimize Mean Squared Error with ADAM

A



Training directly on full mesh results in long training
times and poor approximation

u
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Previous work: last layer of network is linear, so just
initialize it with PCA

We observe you can train directly in the PCA space and
get equivalent results.




Our Training Pipeline

U = PCA([ul c. uN], ]{7) Do PCA on snapshots
[ql .« . qN] — UT [111 c e uN] Project training samples

Train autoencoder to reduce the PCA coefficients further
N

f* = argmin Z H decode(eneode(qi)) — qu%

0 i
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L4 - Full Space MSE vs Training Epoch

Random Weights

0 1000 2000




QE—

L4 - Full Space MSE vs Training Epoch

Random Weights

1077 '__‘ bl sDPCAOM ‘PCA Initialized
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L4 - Full Space MSE vs Training Epoch

Random Weights

1075 - ” PCA Initialized
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M!H'vm ,M& MWMM W PCA TInitialized (Frozen)
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Full Space MSE vs Training Epoch

10—4 .

Random Weights

PCA Initialized

PCA Initialized (Frozen)

PCA Space Loss




High
Dimensional
System

7
q=U"u \ S = Uq

Dimensional
System

7 — encode(q) \\ /II q= decode(z)
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Tiny

Dimensional
System
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Convergence Rate

Quasi-Static Convergence

Full Linear Ours

lterations
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Latent Space Dynamics

u,1 = argmin F(u)

u
_

Big

Becomes

Zpil = argmir; E(U decode(z))

Small(er)
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How do we make it fast?

Recall our objective function:
Inertia Term
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F(z) = V(Udecode(z)) + I(U decode(z), u,,u,)
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Elastic Potential
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I = o2 k(ecod) u, — unhHM

Precompute U7 MU and only partially decode

1

. 2
I = 573 ||(\iecode(z)}— dn — Anh|lyrvu

|

Save as drfor next timestep

I = u—u, — k|3,

~
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How do we make it fast?

Recall our objective function:
Inertia Term

A
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F(z) = V(Udecode(z)) + I(U decode(z), u,,u,)
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Elastic Potential




Cubature
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Cubature
# Tets

V(u) = Z V;(u)

€S

Approximate with
weighted sum

v
Viu) ~ E w; Vi(a)
Use [An et al. 08]’s “Optimized Cubature”

€S

E Only fully-decode elements we need
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Results: Stability

Single Cubature Point
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Results: Stability

2 dof Autoencoder subspace (ours)
SCREEN CAPTURE

A
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Results: Stability

6 dof linear subspace
SCREEN CAPTURE

4



__ e

And finally VE(z)

Only the gradient of our objective is required
since using a quasi-Newton scheme

OF

VE( ) Jdecode aq

/

Jdecode Non-constant Jacobian matrix of our autoencoder

Automatic differentiation allows us to evaluate Jdecodev
with equivalent complexity as a single forward evaluation

- o




Flfb%w_ (ms) AVg Time per E Evalutation }“Sir{le (ms) Avg Time per Timestep

x28 Avg. Evaluations
0.75 -
10 -
x9.3 Avg. Evaluations
050 Precondition
L-BFGS (1x)
5 -
0.25 -
0.00 - 0 -

PCA Autoencoder PCA Autoencoder
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Results: Performance

PCA - 62 dof Ours - 20 dof

O5Hz 159 Hz

SCREEN CAPTURE
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Results: Accuracy

Full-space Comparison

PCA Only Autoencoder (ours)

Without Cubature Acceleration




Limitations
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Summary

= Autoencoders can reduce system dimensionality
further than linear alone.

* This reduction allows faster simulation

= Results are robust, even for small spaces and few
cubature points.
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Future Work

= Can we incorporate cubature into our method?
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Future Work

= Can we incorporate cubature into our method?

" One network, many shapes?

= Automatic training data generation?
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Thank you for listening!
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Training Data

Training data generation SCREEN CAPTURE

A
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Choice of Activation

i

RelLU Activations

SCREEN CAPTURE
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Preconditioner
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